首页> 外文OA文献 >Evaluation of noise robustness for local binary pattern descriptors in texture classification
【2h】

Evaluation of noise robustness for local binary pattern descriptors in texture classification

机译:纹理分类中局部二进制模式描述符的噪声鲁棒性评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Local binary pattern (LBP) operators have become commonly used texture descriptors in recent years. Several new LBP-based descriptors have been proposed, of which some aim at improving robustness to noise. To do this, the thresholding and encoding schemes used in the descriptors are modified. In this article, the robustness to noise for the eight following LBP-based descriptors are evaluated; improved LBP, median binary patterns (MBP), local ternary patterns (LTP), improved LTP (ILTP), local quinary patterns, robust LBP, and fuzzy LBP (FLBP). To put their performance into perspective they are compared to three well-known reference descriptors; the classic LBP, Gabor filter banks (GF), and standard descriptors derived from gray-level co-occurrence matrices. In addition, a roughly five times faster implementation of the FLBP descriptor is presented, and a new descriptor which we call shift LBP is introduced as an even faster approximation to the FLBP. The texture descriptors are compared and evaluated on six texture datasets; Brodatz, KTH-TIPS2b, Kylberg, Mondial Marmi, UIUC, and a Virus texture dataset. After optimizing all parameters for each dataset the descriptors are evaluated under increasing levels of additive Gaussian white noise. The discriminating power of the texture descriptors is assessed using tenfolded cross-validation of a nearest neighbor classifier. The results show that several of the descriptors perform well at low levels of noise while they all suffer, to different degrees, from higher levels of introduced noise. In our tests, ILTP and FLBP show an overall good performance on several datasets. The GF are often very noise robust compared to the LBP-family under moderate to high levels of noise but not necessarily the best descriptor under low levels of added noise. In our tests, MBP is neither a good texture descriptor nor stable to noise.
机译:近年来,本地二进制模式(LBP)运算符已成为常用的纹理描述符。已经提出了几种新的基于LBP的描述符,其中一些旨在提高对噪声的鲁棒性。为此,修改了描述符中使用的阈值和编码方案。在本文中,评估了以下八个基于LBP的描述符对噪声的鲁棒性。改进的LBP,中值二进制模式(MBP),局部三进制模式(LTP),改进的LTP(ILTP),局部五进制模式,鲁棒LBP和模糊LBP(FLBP)。为了更好地了解它们的性能,将它们与三个众所周知的参考描述符进行了比较。经典的LBP,Gabor滤波器组(GF)和从灰度共生矩阵得出的标准描述符。此外,还介绍了FLBP描述符的实现速度大约快了五倍,并且引入了一个新的描述符(称为移位LBP),以更快地逼近FLBP。纹理描述符在六个纹理数据集上进行比较和评估。 Brodatz,KTH-TIPS2b,Kylberg,Mondial Marmi,UIUC和病毒纹理数据集。在为每个数据集优化所有参数之后,在增加的高斯白噪声水平下评估描述符。使用最近邻分类器的十倍交叉验证评估纹理描述符的区分能力。结果表明,一些描述符在低噪声水平下表现良好,而它们都在不同程度上受到较高水平的引入噪声的影响。在我们的测试中,ILTP和FLBP在多个数据集上显示出总体良好的性能。与LBP系列相比,在中等到高水平的噪声下,GF通常具有非常强的噪声鲁棒性,但在低水平的添加噪声下,不一定是最佳的描述符。在我们的测试中,MBP既不是很好的纹理描述符,也不是对噪声稳定的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号